
Biological systems are complex sources of information 
during development and disease. This information is 
now being systematically measured and mined at 
unprecedented levels using a plethora of ‘omics’ 
and smart technologies. The advent of these high- 
throughput approaches to biology and disease presents 
both challenges and opportunities to the pharmaceuti-
cal industry, for which the aim is to identify plausible 
therapeutic hypotheses from which to develop drugs. 
However, recent advances in a number of factors have 
led to increased interest in the use of machine learn-
ing (ML) approaches within the pharmaceutical indus-
try. Coupled with infinitely scalable storage, the large 
increase in the types and sizes of data sets that may 
provide the basis for ML has enabled pharmaceutical 
companies to access and organize many more data. 
Data types can include images, textual information, 
biometrics and other information from wearables, assay  
information and high- dimensional omics data1.

Over the past few years, the field of artificial intelli-
gence (AI) has moved from largely theoretical studies to 
real- world applications. Much of that explosive growth 
has to do with the wide availability of new computer 
hardware such as graphical processing units (GPUs) that 
make parallel processing faster, especially in numerically 
intensive computations. More recently, advances in new 
ML algorithms, such as deep learning (DL)2, that build 

powerful models from data and the demonstrable suc-
cess of these techniques in numerous public contests3,4 
have helped to enormously increase the applications 
of ML within pharmaceutical companies in the past  
2 years.

Although many consumer service industries have 
been early adopters of newer methods from the field of 
ML, uptake from the pharmaceutical industry has lagged 
until recently. It is well known that the success rate for 
drug development (as defined from phase I clinical 
trials to drug approvals) is very low across all therapeu-
tic areas and across the global pharmaceutical industry. 
A recent study on 21,143 compounds found that the 
overall success rate was as low as 6.2%5. Hence, much of 
the rationale for the use of ML technologies within the 
pharmaceutical industry is driven by business needs to 
lower overall attrition and costs.

All stages of drug discovery and development, 
including clinical trials, have embarked on developing 
and utilizing ML algorithms and software (Fig. 1) to iden-
tify novel targets6, provide stronger evidence for target– 
disease associations7, improve small- molecule com-
pound design and optimization8, increase understanding 
of disease mechanisms, increase understanding of 
disease and non- disease phenotypes9, develop new bio-
markers for prognosis, progression and drug efficacy1,  
improve analysis of biometric and other data from 
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patient monitoring and wearable devices, enhance 
digital pathology imaging10 and extract high- content 
information from images at all levels of resolution.

Consequently, many pharmaceutical companies have 
begun to invest in resources, technologies and services to 
generate and curate data sets to support research in this 
area. Furthermore, technology giants such as IBM and 
Google, biotechnology start- ups and academic centres 
are not only providing cloud- based computation services 
but also working in the pharmaceutical and health- care 
space with industry partners. This Review provides an 
overview of current tools and techniques (the toolbox) 
used in ML, including deep neural nets, and an overview 
of progress so far in key pharmaceutical application areas.

The machine learning toolbox
Fundamentally, ML is the practice of using algorithms to 
parse data, learn from it and then make a determination 
or a prediction about the future state of any new data 
sets. So rather than hand- coding software routines with 
a specific set of instructions (pre- determined by the pro-
grammer) to accomplish a particular task, the machine 
is trained using large amounts of data and algorithms 
that give it the ability to learn how to perform the task. 
The programmer codes the algorithm used to train the 
network instead of coding expert rules.

The algorithms adaptively improve their perfor-
mance as the quantity and quality of data available for 
learning increase. Hence, ML is best applied to solve 
problems for which a large amount of data and several 
variables are at hand but a model or formula relating 
these is not known.

There are two main types of technique that are used 
to apply ML: supervised and unsupervised learning. 
Supervised learning methods are used to develop train-
ing models to predict future values of data categories or 

continuous variables, whereas unsupervised methods are 
used for exploratory purposes to develop models that 
enable clustering of the data in a way that is not speci-
fied by the user. Supervised learning trains a model on 
known input and output data relationships so that it can 
predict future outputs for new inputs. Future outputs are 
typically models or results for data classification or an 
understanding of the most influential variables (regres-
sion). The unsupervised learning technique identifies 
hidden patterns or intrinsic structures in the input data 
and uses these to cluster data in meaningful ways.

Model selection concepts. The aim of a good ML model 
is to generalize well from the training data to the test data 
at hand. Generalization refers to how well the concepts 
learned by the model apply to data not seen by the model 
during training. Within each technique, several meth-
ods exist (Fig. 2), which vary in their prediction accuracy, 
training speed and the number of variables they can han-
dle. Algorithms must be chosen carefully to ensure that 
they are suitable for the problem at hand and the amount 
and type of data available. The amount of parameter tun-
ing needed and how well the method separates signal 
from noise are also important considerations.

Model overfitting happens when the model learns not 
only the signal but also some of the unusual features of 
the training data and incorporates these into the model, 
with a resulting negative impact on the performance of 
the model on new data. Underfitting refers to a model 
that can neither model the training data nor generalize 
to new data. Typical ways to limit overfitting are to apply 
resampling methods or to hold back part of the training 
data to use as a validation data set. Regularization regres-
sion methods (such as Ridge, LASSO or elastic nets) add 
penalties to parameters as model complexity increases so 
that the model is forced to generalize the data and not 
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overfit. One of the most effective ways to avoid overfit-
ting is the dropout method11, which randomly removes 
units in the hidden layer. Different ML techniques have 
different performance metrics. Basic evaluation met-
rics12 such as classification accuracy, kappa13, area under 
the curve (AUC), logarithmic loss, the F1 score and the 
confusion matrix can be used to compare performance 
across methods. The availability of gold standard data 
sets as well as independently generated data sets can be 
invaluable in generating well- performing models.

Several software libraries are now available for high- 
performance mathematical computation across a variety 
of hardware platforms (central processing units (CPUs), 

GPUs and tensor processing units (TPUs)), and from 
desktops to clusters of servers. Commonly used ML pro-
grammatic frameworks are the open- source framework 
TensorFlow, originally developed by researchers and 
engineers from the Google Brain team within Google’s 
AI organization (see Related links), as well as PyTorch, 
Keras and Scikit- learn.

Deep neural network architectures. DL is a modern 
reincarnation of artificial neural networks from the 
1980s and 1990s and uses sophisticated, multi- level 
deep neural networks (DNNs) to create systems that 
can perform feature detection from massive amounts of 
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Fig. 2 | Machine learning tools and their drug discovery applications. This figure gives an overview of the machine 
learning techniques that have been used to answer the drug discovery questions covered in this Review. A range of 
supervised learning techniques (regression and classifier methods) are used to answer questions that require prediction 
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unlabelled or labelled training data2. The major differ-
ence between DL and traditional artificial neural net-
works is the scale and complexity of the networks used. 
In neural networks, input features are fed to an input 
layer, and after a number of nonlinear transformations 
using hidden layers, the predictions are generated by an 
output layer. This is typically done by using the back-
propagation of errors to progressively reduce the dif-
ference between the obtained and the expected values 
of the output. Each output node corresponds to a task  
(or class) to be predicted. If there is only one node in the 
output layer, then the corresponding network is referred 
to as a single- task neural network. DL can have a large 
number of hidden layers because it uses more powerful 
CPU and GPU hardware, whereas traditional neural net-
works normally use one or two hidden layers because of 
hardware limitations. There are also many algorithmic 
improvements in DL.

The applications of DNNs in drug discovery have 
been numerous and include bioactivity prediction14, 
de novo molecular design, synthesis prediction and 
biological image analysis3. One advantage of DNNs is 
that they have several different flexible architectures 
described below and are thus used to answer a variety of 
questions. In the first architecture, deep convolutional 
neural networks (CNNs), some of the hidden layers are 
only locally (rather than globally) connected to the next 
hidden layer. CNNs achieve the best predictive perfor-
mance in areas such as speech and image recognition 
by hierarchically composing simple local features into 
complex models. Graph convolutional networks are a 
special type of CNN that can be applied to structured 
data in the form of graphs or networks. The second 
architecture is the recurrent neural network (RNN), 
which takes the form of a chain of repeating modules of 
neural networks in which connections between nodes 
form a directed graph along a sequence. This allows for 
the analysis of dynamic changes over time where per-
sistent information is needed. Long short- term mem-
ory neural networks are a special kind of RNN that are 
capable of learning long- term dependencies. The third 
example — fully connected feedforward networks — 
are networks in which every input neuron is connected 
to every neuron in the next layer. This is the opposite 
of an RNN in that, with fully connected feedforward 
networks, the gradient is clearly defined and comput-
able through backpropagation. These models have 
been used in challenging predictive model building 
cases, such as with gene expression data, in which the 
number of samples is small relative to the number of 
features. The fourth network architecture is the deep 
autoencoder neural network (DAEN). This type of neu-
ral network is an unsupervised learning algorithm that 
applies backpropagation to project its input to its output 
with the purpose of dimension reduction15, thus trying 
to preserve the important random variables of the data 
while removing the non- essential parts. The fifth and 
final network architecture — generative adversarial net-
works (GANs) — consist of any two networks (although 
often a combination of feedforward neural networks and 
CNNs), where one is tasked to generate content and the 
other to classify that content.

Data characteristics. The practice of ML is said to 
consist of at least 80% data processing and cleaning and 
20% algorithm application. The predictive power of any 
ML approach is therefore dependent on the availabil-
ity of high volumes of data of high quality. Data used 
for training need to be accurate, curated and as com-
plete as possible in order to maximize predictability. 
Experimental design often involves discussions on the 
ideal sample size and the appropriate power calculations 
for correctly estimating this parameter. Whether the cor-
rect type of data is even available and what data should 
be experimentally generated are also key considerations 
for certain questions. ML applications are more powerful 
when used on data that have been generated in a system-
atic manner, with minimal noise and good annotation. 
As we discuss below, many applications are not particu-
larly effective because data are combined from multiple 
sources with variable data quality. There are ongoing 
efforts to develop open annotated data in specific areas 
of drug discovery, such as target validation16. These aim 
to generate good quality positive and negative annota-
tions in areas that are important to drug discovery and 
development to foster application of ML.

Applications in drug discovery
Target identification and validation. The pre- eminent 
approach in drug discovery is to develop drugs (small 
molecules, peptides, antibodies or newer modalities 
including short RNAs or cell therapies) that will alter the 
disease state by modulating of the activity of a molecular 
target. Notwithstanding a recent resurgence in pheno-
typic screens, initiating a drug development programme 
requires identification of a target with a plausible ther-
apeutic hypothesis: that modulation of the target will 
result in modulation of the disease state. Selecting this 
target on the basis of the available evidence is referred to 
as target identification and prioritization. Having made 
this preliminary choice, the next step is to validate the 
role of the chosen target in disease using physiologically 
relevant ex vivo and in vivo models (target validation). 
Although the ultimate validation of the target will only 
come later, through clinical trials, early target valida-
tion is crucial to focus efforts on potentially successful 
projects.

Modern biology is increasingly rich in data. This 
includes human genetic information in large popu-
lations, transcriptomic, proteomic and metabolomic 
profiling of healthy individuals and those with specific 
diseases and high- content imaging of clinical material. 
The ability to capture these large data sets and to re- use 
them via public databases presents new opportunities 
for early target identification and validation. However, 
these multi- dimensional data sets require appropriate 
analytical methods to yield statistically valid models that 
can make predictions for target identification, and this 
is where ML can be exploited. The range of experiments 
that can contribute to target identification and validation 
is wide, but if these experiments are data- driven, ML is 
increasingly being applied.

The first step in target identification is establishing 
a causal association between the target and the disease. 
Establishing causality requires demonstration that 
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modulation of a target affects disease from either natu-
rally occurring (genetic) variation or carefully designed 
experimental intervention. However, ML can be used to 
analyse large data sets with information on the function 
of a putative target to make predictions about poten-
tial causality, driven, for instance, by the properties of 
known true targets. ML methods have been applied 
in this way across several aspects of the target identi-
fication field. Costa et al.17 built a decision tree- based 
meta- classifier trained on network topology of protein–
protein, metabolic and transcriptional interactions, as 
well as tissue expression and subcellular localization, 
to predict genes associated with morbidity that are also 
druggable. By inspecting the decision tree, they identi-
fied regulation by multiple transcription factors (TFs), 
centrality in metabolic pathways and extracellular loca-
tion as key parameters. In other studies, ML models have 
focused on specific diseases or therapeutic areas. Jeon 
et al.6 built a support vector machine (SVM) classifier using 
various genomic data sets to classify proteins into drug 
targets and non- drug targets for breast, pancreatic and 
ovarian cancers. Key classification features were gene 
essentiality, mRNA expression, DNA copy number, 
mutation occurrence and protein–protein interaction 
network topology. In all, 122 global cancer targets were 
identified, 69 of which overlap with 116 known cancer 
targets. In addition, 266, 462 and 355 targets were iden-
tified as specific to breast, pancreatic and ovarian can-
cers, respectively. Two predicted targets were validated 
with peptide inhibitors that had strong anti- proliferative 
effects in cell culture models. Further, inhibitors for 137 
predicted pancreatic cancer targets were almost twice 
as likely to show strong inhibition of cell viability as 
other compounds. Ament et al.18 built a model based 
on mouse TF binding sites and transcriptome profiling 
data to characterize transcriptional changes underlying 
Huntington disease. They reconstructed a genome- scale 
model of target genes for 718 TFs in the mouse striatum 
using a regression model and LASSO regularization. 
Overall, 13 of 48 identified TF modules were differen-
tially expressed in striatal tissue in human disease and 
provided potential starting points for Huntington dis-
ease therapies. Molecular targets for tissue- specific anti- 
ageing therapies have been identified by Mamoshina 
et al.1. They compared gene expression signatures from 
young and old muscle. The comparison of several super-
vised ML methods revealed SVMs with linear kernel and 
deep feature selection to be best suited to the identifi-
cation of ageing biomarkers. In each of these examples, 
ML generated a set of predictions of targets that have 
properties that suggest they are likely to bind drugs, or 
be involved in disease, but further validation is essential 
to generate a therapeutic hypothesis.

The literature is the primary source of knowledge on 
target association with disease. Automated processing 
of the literature unlocks information from unstruc-
tured text that would otherwise be inaccessible. Recent 
advances in natural language processing (NLP), an ML 
approach applied to text mining, have enabled more 
effective data mining to identify relevant papers. BeFree19 
applies NLP Kernel methods to identify drug–disease, 
gene–disease and target–drug associations in Medline 

abstracts. This supervised learning approach relies on 
the manually annotated European Union adverse drug 
reactions (EU- ADR) database corpus of relationships 
and a semi- automatically annotated corpus based on the 
Genetic Association Database. DigSee20 identifies genes 
and diseases in Medline abstracts, uses NLP to extract 
biological events between these entities and ranks the 
evidence sentences with a Bayesian classifier.

One area with great scope for ML is in understanding 
basic aspects of biology to identify therapeutic oppor-
tunities through alternate modalities or novel targets. 
Understanding genetic variation in splicing signals is 
one example. DL splicing models are now able to accu-
rately predict alternate splicing signals21. The latest inte-
grative splicing models22 combine CLiP–seq assay data 
of splicing factor binding in vivo with RNA sequencing 
experiments in which these splicing factors have been 
knocked down or overexpressed. Combining splicing 
code models with predictions of de novo and complex 
splicing variations has allowed identification of splicing 
variants specific to Alzheimer disease23. Recent applica-
tions of similar approaches identified an escape mech-
anism from CART-19 immunotherapy24, rare genetic 
variants leading to deafness25 and splicing variants  
associated with autism26.

ML can also predict cancer- specific drug effects. 
Iorio et al.27 screened 990 cancer cell lines against 265 
anticancer drugs and investigated how genome- wide 
gene expression, DNA methylation, gene copy num-
ber and somatic mutation data affect drug response. 
They used ANOVA, logic models and ML algorithms 
(elastic net regression and random forests) to identify 
molecular features that predict drug response. The 
most predictive data type across cancer types was gene 
expression, whereas the most predictive cancer- specific 
models included genomic features (driver mutations 
or copy number alterations) and were even better if 
they included DNA methylation data. Tsherniak et al.28 
used data from RNA interference (RNAi) screens of  
501 cancer cell lines to find molecular markers that pre-
dict cancer dependencies for 769 genes. They developed 
a nonlinear regression model based on conditional infer-
ence trees to generate predictive models based on gene 
expression, gene copy number and somatic gene muta-
tions. McMillan et al.29 screened 222 chemicals against 
>100 heavily annotated cell models of diverse and 
charac teristic somatic lung cancer lesions. They applied 
regularized ML (elastic net) and probability- based met-
rics (scanning Kolmogorov–Smirnov) to identify 171 
chemical–genetic associations that revealed targetable 
mechanistic vulnerabilities in a range of oncotypes with-
out effective therapies. These approaches suggest that 
there are opportunities for tumour- intrinsic precision 
medicine.

Another important question for drug developers is 
how likely it is that a drug can be made for any given target. 
For small- molecule drugs, this entails identifying tar-
gets that have features that suggest these proteins can bind 
small molecules30. Different target attributes can be used 
to generate these druggability models. Nayal and Honig31 
trained a random forest classifier on physicochemical, 
structural and geometric attributes of 99 drug- binding 

Support vector machine 
(SVM) classifier
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classification tasks by 
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memberships in a multi- 
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followed by RNA sequencing to 
identify all RNA species bound 
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RNA protein binding sites or 
RNA modification sites on a 
genome- wide scale.
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and 1,187 non- drug-binding cavities from a set of  
99 proteins. Size and shape of the surface cavities were the 
most important features. Several studies derived various 
physicochemical properties from protein sequences of 
known drug and non- drug targets and applied SVMs32,33 
or biased SVMs with stacked autoencoders, a DL model34, 
to predict druggable targets. Druggable proteins have 
also been found to occupy specific regions of protein–
protein interaction networks and tend to be highly con-
nected6,17,35. Again, these examples of ML approaches 
generated sets of targets that are predicted as likely to 
bind drugs, hence reducing the potential search space, 
but these targets require further validation.

The holy grail for target identification or validation 
is the early prediction of future clinical trial success for 
a target- based drug discovery programme. Various non- 
ML analyses point to possible predictors of success5,36,37. 
Using ML, Rouillard et al.38 assessed omics data for a set 
of 332 targets that succeeded or failed phase III clinical 
trials by multivariate feature selection. They found gene 
expression data were particularly predictive of successful 
targets, characterized by low mean RNA expression and 
high variance across tissues. This study confirmed pre-
vious findings that ideal targets exhibit disease- specific 
expression in affected tissues39. Ferrero et al.7 trained a 
range of ML classifiers using target–disease associations 
from the open targets platform16 to predict de novo poten-
tial therapeutic targets. Assessment of feature importance 
identified the existence of an animal model, gene expres-
sion and genetic data as key data types for therapeutic 
target prediction independent of the indication. However, 
this approach is limited by the sparse nature of the data 
and the lack of information about reasons for failure of 
initiated programmes. More fundamentally, owing to 
the length of time between initiating a successful drug 
discovery programme and bringing the drug to market, 
successful programmes reflect earlier paradigms for drug 
development. The drivers of successful small- molecule 
programmes are unlikely to be the same today, as newer 
modalities, such as biologics (including antibodies), are 
available. The increasing focus on precision medicine 
introduces additional constraints. It is essential for future 
prediction approaches that extensive data on successful 
and failed drug discovery programmes are available with 
metadata in the public domain.

Small- molecule design and optimization. The dis-
covery of drug candidates that can block or activate 
the target protein of interest involves extensive virtual 
and experimental high- throughput screening of large 
compound libraries. Candidate structures are then 
further refined and modified to improve target speci-
ficity and selectivity, along with optimized pharmaco-
dynamic, pharmacokinetic and toxicological properties. 
Importantly, though, the lack of sufficient high- quality 
data for new chemistry such as proteolysis- targeting chi-
meras (PROTACs) and macrocycles can limit the impact 
of ML on such chemistry.

Much work has been done to apply DL methods, 
such as multi- task neural networks, to ligand- based 
virtual screening. Given a lead compound, compounds 
that have a similar chemical structure can be identified 

computationally. This has typically been performed 
using classic statistical methods, but multi- task DNNs 
are proving to be more effective40. DNNs can significantly 
boost predictive power when inferring the properties 
and activities of small molecules41. The one- shot learn-
ing technique can be used to substantially reduce the 
amount of data required to make meaningful predictions 
about the readout of a molecule in a new experimental 
setup. Combining ML with Markov state models, this 
technique was used to identify the previously unknown 
mechanism of opiate binding to the µ- opioid receptor, 
revealing an allosteric site that is involved in its activa-
tion42. The benefits of multi- task models over single- task 
models are, however, highly data set- dependent. To help 
benchmark ML algorithms, Pande et al. compiled a large 
benchmarking data set, MoleculeNet43, which has been 
used for the comparison of different ML algorithms. 
MoleculeNet contains data on the properties of over 
700,000 compounds. All data sets have been curated 
and integrated into the open- source DeepChem package  
(see Related links), which also includes other tools.

DNNs and modern tree search algorithms can also 
be used to plan efficient routes of chemical synthesis. 
To plan the synthesis of a target molecule, the mol-
ecule is formally decomposed using reversed reactions  
(retrosynthesis). This procedure results in a sequence of 
reactions that can then be executed in the laboratory in 
the forward direction to synthesize the target. A major 
challenge is to systematically apply synthetic chemistry 
knowledge to this process. The manual incorporation 
of transformation rules is prohibitive as the knowl-
edge of chemistry grows exponentially, and the scope 
and limitations of many reactions are not completely 
understood. To automatically extract the rules, Segler 
et al.44 used the Reaxys database (~11 million reactions 
and ~300,000 rules) and performed a Monte Carlo tree 
search (MCTS) to score the tree nodes in conjunction 
with DNNs to steer the search in the most promising 
directions. In quantitative analyses, this method out-
performs the gold standard, best first search, with two 
different implementations (heuristic method and neural). 
Furthermore, MCTS is 30 times faster than traditional 
computer- aided search methods for almost two- thirds of 
the molecules examined. Qualitative tests were also per-
formed in a double- blind study. Organic chemists were 
asked to choose between literature- based and predicted 
synthesis routes without knowing how the route was 
obtained. Here, for the first time, chemists considered 
the quality of the predicted routes to be, on average, as 
good as routes taken from the literature.

Another valuable application of DL is molecu-
lar de novo design through reinforcement learning. 
Researchers at AstraZeneca45 made use of RNNs for expan-
sion of the chemical space by tuning a sequence-based  
generative model to design compounds with almost 
optimal values for solubility, pharmacokinetic proper-
ties, bioactivity and other parameters. Kadurin et al.46 
also developed similar models using deep GANs to per-
form molecular feature extraction on very large data sets. 
However, it must be noted that reinforcement learning 
might not help in identifying new and unprecedented  
synthetic routes47.

Heuristic method
A function that calculates the 
approximate cost of a problem 
(or ranks alternatives).
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Community problem- solving competitions can be 
useful to advance method development in a particular 
area. Researchers at Merck Sharp & Dohme sponsored 
a Kaggle competition for the prediction of other rele-
vant absorption, distribution, metabolism and excretion 
(ADME) parameters as well as some biochemical targets. 
The winning team used DNNs, which, in 13 out of 15 
assay systems, performed slightly better than a standard 
random forest41. Some of their key learnings were that the 
optimization of the hyperparameters can improve DNNs, 
feature selection is not necessary, multi- task models per-
form better than single- task models and overfitting can 
be prevented by using dropout. Ramsundar et al.40 also 
observed that multi- task DNNs perform better than 
single- task DNNs. A comparison between single- task 
and multi- task DNNs and a comparison between differ-
ent ML methods (random forest, SVM, naive Bayes and 
logic regression) were pursued by Lenselink et al.48 using 
one standardized data set obtained from ChEMBL49. 
Here, the DNN model performed best, and a multi- task 
DNN was also found to be better than a single- task DNN. 
Multi- task DNNs have also been shown to be better for 
predictions of lead optimization and lead identification, 
as they can synthesize information from many distinct 
biological sources50 owing to the presence of multiple 
nodes in the output layer.

Feature selection before model building can improve 
ML models, as shown in a study by Kramer and 
Gütlein51. They were also able to detect improvements 
in random forest models against other ML methods such 
as SVMs and naive Bayes, with faster performance and 
fewer features used while training models. In their view, 
one major benefit from filtering out chemical fingerprint 
bits is the improvement in model interpretability. If the 
fingerprint is not filtered, the interpretability is hindered 
owing to an effect called ‘bit collisions’. The crucial 
impact of filtering fingerprints was also independently 
shown by Landrum et al.8.

Hochreiter et al.52 also found that DNN- based mod-
els significantly outperformed all competing methods 
and that the predictive performance of DL, using a data 
set of all ChEMBL assays and target prediction based 
on a simplified molecular input line entry system (SMiLES) 
input, is in many cases comparable to that of tests per-
formed in wet laboratories. The Hochreiter group also 
showed that DNNs outperformed all other ML methods 
(k- nearest neighbour, naive Bayes, random forest and 
SVMs) and statistics- based methods (similarity ensem-
ble approach53) for target prediction54. The same group 
won the majority of the challenges in the Tox21 Data 
Challenge 2014 (REF.55).

An unresolved challenge in the field of small-molecule  
design is how to best represent the chemical structure. 
A plethora of representations exist, from simple cir-
cular fingerprints such as the extended- connectivity  
fingerprint (ECFP) to sophisticated symmetry functions 
(Fig. 3). It is still not clear which structure represen-
tation works best for which small-molecule design 
problem. Therefore, it will be interesting to see if the 
rise in ML studies in the field of cheminformatics will 
give more guidance about the best choice for structure  
representation.

Predictive biomarkers. ML- based biomarker discovery 
and drug sensitivity predictive models are demonstrated 
approaches to help improve clinical success rates, to 
better understand the mechanism of action of a drug 
and to identify the right drug for the right patients56–58. 
Late- stage clinical trials take many years and millions 
of dollars to conduct, so it will be most beneficial to 
build, validate and apply predictive models earlier, 
using preclinical and/or early- stage clinical trial data. 
A translational biomarker can be predicted using ML 
approaches on preclinical data sets. After being validated 
using independent data sets (either preclinical or clini-
cal), the model and its corresponding biomarker can be 
applied to stratify patients, identify potential indications 
and suggest the mechanisms of action of a drug (Fig. 4).

Although there are thousands of papers on biomark-
ers and predictive models in the literature, few of them 
have been used in clinical trials. Various factors contrib-
ute to this gap, including data quality, model selection, 
access to data and software, model reproducibility and 
the design of assays suitable for a clinical setting. To 
address some of the model- related issues, several com-
munity efforts have evaluated ML approaches to develop 
both classification and regression models. Several years 
ago, the US Food and Drug Administration (FDA) 
organized the MicroArray Quality Control II (MAQC II) 
initiative to evaluate various ML methods for predict-
ing clinical end points from baseline gene expression 
data59. In the project, 36 independent teams analysed  
6 microarray data sets to generate predictive models to 
classify a sample with 1 of 13 clinical end points. General 
observations included the importance of the data quality 
control processes, the need for skilled scientists (some 
teams perform consistently better than other teams 
using the same ML methods) and the importance of 
selecting appropriate modelling approaches for clinical 
end points. For instance, a poor prediction of overall 
survival for patients with multiple myeloma could be 
partly due to applying an arbitrary survival cut- off of 
24 months. Both gene expression and overall survival in 
multiple myeloma are continuous variables, and there-
fore, a regression- based prediction model is appropriate. 
Indeed, using a univariate Cox regression approach, a 
gene expression signature that significantly predicts 
a high- risk subgroup of patients was identified60. This 
signature was confirmed in several independent stud-
ies and from different regression- based approaches61–64, 
highlighting the advantage of a regression approach 
without predefined class membership.

The National Cancer Institute (NCI)-DREAM chal-
lenge was another community effort to evaluate regres-
sion methods for building drug sensitivity predictive 
models (defined as regression questions)65. Each partici-
pating team used their best modelling approaches and 
optimized their parameter sets on the same training data 
sets (35 breast cancer cell lines treated with 31 drugs) 
then tested the performance of their models on the 
same blinded testing data sets (18 breast cancer cell lines 
treated with the same 31 drugs). Six types of baseline 
profiling data were available for generating predictive 
models — RNA microarray, single nucleotide poly-
morphism (SNP) array, RNA sequencing, reverse phase 

Chemical fingerprint
A concept used in chemical 
informatics to compare 
molecules with each other. The 
structure of a molecule is 
encoded in a series of binary 
digits (bits) that represent the 
presence or absence of 
particular substructures in the 
molecule.

Simplified molecular input 
line entry system (SMILES)
A line notation for entering and 
representing molecules  
and reactions; for example, 
carbon dioxide is represented 
as O = C = O.
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protein array, exome sequencing and DNA methylation 
status — to which 44 participating teams applied various 
regression approaches such as kernel method, nonlinear 
regression (regression trees), sparse linear regression, 
partial least squares regression, principal component 
regression or ensemble methods. Consistent with the 
MAQC II results, some teams consistently outperformed 
other teams using the same approaches. The differen-
tial performance was likely reflective of the technical 
details used for quality control, data reduction, feature 
selection, splitting strategy and fine- tuning ML param-
eters, as well as potential incorporation of biological 
knowledge such as gene function information or clin-
ical data into the construction of the predictive models. 
In addition, some drugs were easier to build predictive 
models for than others for all teams and methods. The 
NCI- DREAM challenge data sets and results continue 

to be used as validation data sets for method develop-
ment and evaluation, for example, on new random for-
est ensemble frameworks66, group factor analyses67 and 
other approaches68,69.

Several successful case studies have now been pub-
lished in which ML- generated predictive models and 
their corresponding biomarkers have played a criti-
cal role in drug discovery and development. Li et al.56 
conducted a case study using standard- of-care drugs 
in which they first built models for drug sensitivity 
to erlotinib and sorafenib (one model for each drug) 
using cancer cell line screen data. They then applied 
the models to stratify patients from the BATTLE 
clinical trial70, who were treated with one of the two 
drugs, and demonstrated that the models were predic-
tive and drug- specific. The model- derived biomarker 
genes were shown to be reflective of the mechanism of 
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action of each drug, and when combined with globally 
normalized public domain data from various cancer 
types, the model predicted sensitivities of cancer types 
to each drug that were consistent with their FDA- 
approved indications. This study shows that using ML 
approaches to identify key features that contribute to 
drug sensitivity across various cancer types in a tissue- 
agnostic manner could be useful for drug develop-
ment (in comparison with cancer type- based clinical 
trials followed by label expansions). In 2017, the FDA 
approved the programmed cell death 1 (PD1) inhibi-
tor pembrolizumab for cancers with a specific genetic 
biomarker. This is the first FDA approval based on a 
cross- indication genetic biomarker rather than a cancer 
type71, highlighting the need for more mechanism- based  
biomarker discovery.

Recently, there has been much progress on ML- 
based predictive biomarkers in indications other than 
oncology using various types of input data. Tasaki et al.72 
applied ML approaches to multi- omics data to better 
understand drug responses for patients with rheumatoid 
arthritis. Pare et al.73 developed a novel ML framework 
based on gradient boosted regression trees to build poly-
genic risk scores for predicting complex traits. Tested on 
the UK Biobank data set, their SNP- based models were 
able to explain 46.9% and 32.7% of overall polygenic 
variance for height and BMI, respectively. In addition, 
Khera et al.74 developed genome- wide polygenic scores 
to identify individuals at high risk of coronary artery 
disease, atrial fibrillation, type 2 diabetes, inflammatory 
bowel disease and breast cancer.

The rapid evolution of single- cell RNA sequencing 
technologies has been used for gene clustering and cell- 
specific biomarker discovery. Single- cell RNA sequenc-
ing techniques have been used to identify novel cell 
types, distinguish cell states, trace development lineages 
and integrate expression profiles with spatial resolution 
of cells. However, an unsolved challenge is the reduc-
tion in the gene expression measurements from tens of 
thousands of cells to low- dimension space, typically two 
or three variables. Ding et al.75 developed a probabilistic 
generative model, scvis, to reduce the high- dimensional 
space to the low- dimensional structures in single- cell 
gene expression data with uncertainty estimates. This 
tool was then used to analyse four single- cell RNA 
sequencing data sets and produced 2D representations 
of the multi- dimensional single- cell RNA sequenc-
ing data that could be interpreted to robustly identify 
cell types. In addition, Rashid et al.76 have used vari-
ational autoencoders (VAEs) to transform single- cell 
RNA sequencing data to a latent encoded feature space 
that more efficiently differentiates between the hid-
den tumour subpopulations. Analysis of the encoded 
feature space revealed subpopulations of cells and the 
evolutionary relationship between them. The method 
was completely unsupervised and required minimal 
pre- processing of the data. Additionally, the method is 
tolerant of gene expression dropout in single- cell RNA 
sequencing data sets. Wang and Gu77 proposed deep 
variational autoencoder for single- cell RNA sequencing 
data (VASC), a deep multi- layer generative model, for 
the unsupervised dimension reduction and visualization 
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of this data. Tested on 20 data sets, VASC is superior 
and has broader data set compatibility than several state- 
of-the- art dimension- reduction methods such as ZIFA78 
and SIMLR79.

One exciting recent development in ML is the rapid 
rise of feature selection for biomarker discovery. For 
example, researchers applied unsupervised DL models 
to extract meaningful representations of gene modules 
or sample clusters80. Way and Greene81 introduced a VAE 
model trained on The Cancer Genome Atlas (TCGA) 
pan- cancer RNA sequencing data and identified spe-
cific patterns in the VAE encoded features. Beck et al.82 
conducted image analysis and data integration with 
gene expression and proteomics data to improve the 
identification of lung squamous cell carcinoma. Nirschl 
et al.83 showed that a CNN model could better predict 
the likelihood of cardiac failure from endomyocardial 
biopsy samples (AUC = 0.97) than two trained cardiac 
pathologists could (AUC = 0.73 and 0.75).

In all these examples, for ML- generated predic-
tive biomarkers to be more successful, there are sev-
eral key issues that still need to be addressed. At least 
some of these issues concern the interpretability of 
the classifier, considered by at least some end- users to 
be critical for clinical adoption. One of the other key 
issues is the need to validate these approaches in the 
context of multi- site, multi- institutional data sets to 
demonstrate the generalizability of the approach. The 
research community is actively addressing these issues 
and making rapid progresses, including the application 
of objective approaches and measures for model train-
ing and parameter optimization84, model interpreta-
tion and extraction of biological insights85, and model 
reproducibility86.

Computational pathology. Pathology is a descriptive 
field, as a pathologist interprets what is seen on a glass 
slide by visual inspection. Analysis of these glass slides 
provides a vast amount of information, such as the type 
of cell present in the tissue and their spatial context. The 
interplay between tumour and immune cells within the 
tumour microenvironment is increasingly important in 
the study of immuno- oncology and is not captured by 
other technologies.

Pharmaceutical companies need to understand how 
drug treatments affect particular tissues and cells and 
need to test thousands of compounds before selecting a 
candidate for a clinical trial. Furthermore, as the num-
ber of clinical trials grows, discovering new biomarkers 
will be increasingly important to identify patients who 
will respond to a particular therapy. Increased use of 
computational pathology that may allow for the discov-
ery of novel biomarkers and generate them in a more 
precise, reproducible and high- throughput manner will 
ultimately cut down drug development time and allow 
patients faster access to beneficial therapies.

Before DL, algorithms for tissue image analysis were 
often biologically inspired in collaboration with pathol-
ogists and required computer scientists to handcraft 
descriptive features for a computer to classify a cer-
tain type of tissue or cell. These studies were aimed at 
identifying morphological descriptors in widely used 

haemotoxylin and eosin (H&E)-stained images. Nuclear 
morphometry was among the earliest implementations 
of computational pathology, demonstrating the ability 
to determine associations between computer- generated 
features and prognosis87. Beck et al.88 looked at cells in 
the context of their spatial locations within the sur-
rounding tumour stroma and showed associations 
between stromal features and survival in breast cancer. 
Lee et al.89 have also demonstrated that computational 
analysis of tumour- adjacent benign tissue in prostate 
cancer can reveal information that is typically ignored 
by pathologists but is associated with progression- free 
survival. More recently, Lu et al. showed that features 
that describe nuclear shape and nuclear orientation were 
strongly associated with survival in both oral cancers90 
and early- stage oestrogen receptor- positive breast can-
cers91. In many cases, the availability of immunohisto-
chemical stains, which use antibodies to target specific 
proteins in an image and mark specific cell and tissue 
types, circumvents the need for cell and tissue detec-
tion by morphology and thus enables the generation of 
sophisticated data without the use of DL tools. However, 
in the case of immuno- oncology, ML allows for high- 
throughput generation of features that describe spatial 
relationships for thousands of cells, an infeasible task 
for pathologists. Improvements in individual cell and 
tissue detection via DL methods allow for very precise 
measurements of the tumour microenvironment, so het-
erogeneous features that describe spatial relationships 
between cells and tissue structures can now be measured 
at scale (Fig. 5).

In a study by Mani et al.92, several markers for lym-
phocytes were utilized to understand the heterogeneity 
of these populations in breast cancer. Giraldo et al.93 
examined cell–cell interactions and showed that, using 
cell densities and the relative location of PD1+ and CD8+ 
cells, they could identify patients with Merkel cell car-
cinoma who would respond to pembrolizumab. The 
trade- off for these types of experiment is that they use a 
lot of tissue, typically requiring additional slides for each 
stain; however, hundreds or thousands of features can be 
examined, and the number of possible cell–cell inter-
actions increases with each stain used. In such a case, 
a combination of feature selection and ML methods is 
used to determine combinations that may be predictive 
of therapeutic response.

The application of CNNs to pathology images works 
well because there is a large number of viable pixels that 
can be used for training from a single biopsy or resec-
tion. Given enough well- curated exemplars, a DL algo-
rithm can be designed to learn features automatically 
for a wide variety of classification tasks94. For example, a 
multi- scale convolutional neural network (M- CNN) was 
used in a supervised learning approach for phenotyping 
high- content cellular images9 in a single step as opposed 
to several, independent customized steps. Using solely 
pixel intensity values from the images to convert those 
images into phenotypes, the approach resulted in overall 
more accurate classification of the effects of a compound 
treatment at multiple concentrations. Many image 
analy sis challenges have successfully used DL methods 
to identify areas within cancer tumours95–98, tubules99, 
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mitotic activity100 and lymphocytes101,102 in breast and 
lung cancer.

Beyond pathology images, DL can also facilitate the 
integration of other modalities of information. DL can 
also be used to accelerate magnetic resonance imaging 
(MRI) data acquisition103 or reduce the radiation dose 
required for computed tomography (CT) imaging104. 
With improved imaging quality including temporal and 
spatial resolution and a high signal to noise ratio, the 
performance of image analysis may correspondingly 
improve in applications such as image quantification, 
abnormal tissue detection, patient stratification and 
disease diagnosis or prediction. Another recent study105 
demonstrated the ability to use an inception DL frame-
work to predict the presence of certain mutated genes 
from H&E- stained images of lung tumours.

However, although DL continues to excel in many 
specific image analysis tasks, in practice, a combina-
tion of DL and traditional image analysis algorithms is 
applied in most problem sets. This is done for several 

reasons. First, while DL has shown its ability to match or 
outperform humans in very specific problems (such as 
the detection of glomeruli), it is still not a great general- 
purpose image analysis tool. Development times remain 
long owing to this lack of flexibility. There is also an 
overall scarcity of expert labels available for a specific 
classification task, as these are expensive to generate. 
Approaches to mitigate this include using immunohis-
tochemistry staining to provide additional information 
to pathologists for samples where annotations are chal-
lenging106 as well as efforts to increase the availability 
of well- curated expert annotations for broad- use cases 
(cancer cells versus normal cells), which is an ongoing 
community task.

Another challenge is the issue of transparency. DL 
methods are known for their black- box approach. The 
underlying rationale behind a decision for classification 
tasks is unclear. For drug development, it is important 
to understand mechanisms, and having an interpretable 
output can be useful for finding not only new potential 
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drug targets but also new potential biomarkers to pre-
dict therapeutic response. The generation of many more 
handcrafted features is needed for increased trust in 
interpretability.

A further challenge is the large sample size needed 
in clinical trials to apply DL directly to infer therapeutic 
response. DL typically requires tens of thousands if not 
hundreds of thousands of examples to learn from, and 
clinical trials typically do not produce enough exam-
ples. In certain cases, it may be possible to combine data 
across clinical trials, but biases may exist that can make 
the results more difficult to interpret.

Examples of successful integration of DL and tradi-
tional image analysis workflows include work by Saltz 
et al.101 and Corredor et al.102, in which CNNs were used 
to detect lymphocytes in H&E- stained tissue and sub-
sequent graph- based features were extracted to predict 
disease response. This will likely be a common role for 
DL in the near future, as its superior ability to detect 
cells and tissue can replace traditional segmentation and 
nuclear detection algorithms, and subsequent interpret-
able features can be applied to give spatial context to  
these features.

Outlook
ML approaches and recent developments in DL pro-
vide many opportunities to increase efficiency across 
the drug discovery and development pipeline. As such, 
we expect to see increasing numbers of applications for 
well- defined problems across the industry in the com-
ing years. With available data becoming ‘bigger’, at least 
in the sense of more thoroughly covering the relevant 
variability of the whole data space, and as computers 
become increasingly more powerful, ML algorithms 
are going to systematically generate improved outputs, 
and new, interesting applications are expected to follow. 
This has been clearly exemplified in the previous sec-
tions, in which we have described some ML applications 
for target identification and validation, drug design and 
development, biomarker identification and pathology 
for disease diagnosis and therapy prognosis in the clinic.

These methods are also being applied within the 
health- care setting, which, when combined with drug 
discovery, could lead to significant advances in personal-
ized medicine107. ML has also been applied to electronic 
health records108 and real- world evidence in order to 
improve clinical trial results and optimize the process of 
clinical trial eligibility assessment. For example, a recent 
study demonstrated that DNNs are a highly competitive 
approach for automatically extracting useful informa-
tion from electronic medical records for disease diag-
noses and classification109. Some studies have shown that 
ML models in electronic health records can outperform 
conventional models in predicting prognosis110. ML can 
also be applied to data now coming from sensors and 
wearables to understand disease and develop treatments, 
especially in the neurosciences111. Gkotsis et al.112 applied 
DL approaches to characterize mental health conditions 
on unstructured social media data, which is a difficult 
task for traditional ML approaches.

As shown in Fig. 1, ML approaches are beginning to 
be commonly used in the various steps of the discovery 

and development pipeline by pharmaceutical compa-
nies. This pervasive implementation of ML methods 
has a few but important known issues. A typical issue 
with deep- trained neural networks is the lack of inter-
pretability, that is, the difficulties in obtaining a suitable 
explanation from the trained neural network on how it 
arrives at the result. If the system is used to diagnose a 
disease such as melanoma, for instance, on the basis of 
medical images, this lack of interpretability may hinder 
scientists, regulatory agencies, doctors and patients, 
even in situations in which neural networks perform 
better than human experts. Would a patient trust 
the ML diagnosis more than that of a human expert? 
Although much less dramatic, a similar situation may 
occur in drug design. Would a pharmaceutical company 
trust a neural network for choosing a small molecule for 
inclusion in their portfolio and investment to progress 
to the clinic, without a clear explanation for why the 
neural network has selected this molecule? In addition, 
there may be patent application issues with inventor-
ship if compounds have been designed by computer 
algorithms. In any case, ML results have to be consid-
ered as only hypotheses or interesting starting points 
that are then further developed in studies by research-
ers. Complementary experiments that validate the ML 
result will help to build trust in approaches and outputs, 
but regulatory agencies have yet to clarify their view on 
the lack of interpretability for the clinical use of ML. 
However, even beyond the issue of trust, the lack of inter-
pretability of the approaches makes it more difficult to 
troubleshoot these approaches when they unexpectedly  
fail on new unseen data sets.

Another important issue for neural networks is 
repeatability, which arises because ML outputs are highly 
dependent on the initial values or weights of the network 
parameters or even the order in which training examples 
are presented to the network, as all of them are typically 
chosen at random. Would the network always select the 
same disease target using the same expression data as  
the input? Would the structure of the drug proposed 
by the ML method always be the same? This lack of 
repeatability is particularly problematic for biomarker 
identification, as seen in situations where different tools 
generated different prognosis biomarkers for breast  
cancer on the basis of molecular expression signatures113. 
The fact that different ML methods can yield different 
results will add uncertainty to the adoption of these 
methods at scale. Some solutions to the problems of both 
interpretability and repeatability have been proposed. 
These usually centre on the use of a more complex or 
more time- consuming algorithm or averaging results 
from several network models, but this might be seen as 
adding only one more result to a range of existing results.

Another important point to consider is the avail-
ability of high- quality, accurate and curated data in 
large quantities to train and develop ML models. The 
requirements for the amounts and accuracy desired 
are dependent on the complexity of the data type and 
the question to be resolved. Thus, it can be expensive 
to generate these data sets. Pre- competitive consortia 
of pharmaceutical companies and academic institu-
tions that use appropriate data standards and have the 
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necessary operational and open data frameworks may 
be part of the solution to meet these data demands. 
Many of the data types that are used during drug dis-
covery are far from comprehensive. For example, the 
knowledge of all folds and structures of proteins is not 
complete, and coverage of the data space is similarly 
incomplete. Thus, applications in which these structures 
are predicted, even if much progress has been made, are 
not yet as good as in other areas. The same applies for 
the prediction of reactions involved in the synthesis of 
small molecules for which the entire chemistry space 
is unknown.

Data curation is key to the provision of reusable 
and trustworthy data and can be expensive in terms of 
the time and skills required. Biological curation — the 
extraction of biological information from the scien-
tific literature and its integration into a database — lies 
between an art and a science114, requiring a combina-
tion of computational skills with in- depth biological 
and domain expertise. Collaborative efforts to develop 
shared data resources and metadata (labels) may be ways 
by which high- quality data in the public domain can be 
made more available. This also includes metadata from 
both successful and failed drug discovery programmes 
that can enable prediction approaches and determina-
tion of factors that can reduce attrition in drug develop-
ment. Much more pre- competitive collaboration is also 
needed to aggregate and generate large data resources 
of corporate bioactive data sets of investigational  
compounds as well as historic clinical trial data.

Another limitation in the application of ML models 
is in their use to predict alternative paradigms. Because 
the entire premise of ML relies on the use of training 
data to generate suitable models, ML models can only 
predict within the known framework of the training 

data. In medicinal chemistry, for example, the design 
of compounds with alternative mechanisms of action, 
such as macrocycles, protein–protein interaction inhibi-
tors or PROTACs, can probably only be performed with  
traditional methods.

As well as data and models, the training of research-
ers that understand pharmaceutical science as well as 
computer science, computational statistics and statis-
tical ML and are proficient in utilizing these methods 
needs to be accelerated. Competitions like the DREAM 
Challenges (see Related links), which have shown that 
team composition is a factor in performance, can also be 
useful to attract talent and advance methodology devel-
opment. However, applications will need to be success-
ful in the clinical setting in order to motivate further 
investment from large pharmaceutical and technology 
companies.

ML algorithms, including DL methods, have enabled 
the utilization of AI in the industry setting and in day to 
day life. The impact of ML methods in all areas of drug 
discovery and health care is already being felt, especially 
in the analysis of omics and imaging data. ML algo-
rithms are also successful in speech recognition, NLP, 
computer vision and other applications. For example, 
Internet- enabled smart assistants are now common-
place and can transmit health- related information in the 
form of speech and images or videos. ML approaches 
applied to data collected from such an amalgamation of 
Internet- enabled technologies, coupled with biological 
data, have the potential to dramatically improve the 
predictive power of such algorithms and aid medical 
decision making about the therapeutic benefits, clinical 
biomarkers and side effects of therapies.
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